
www.manaraa.com

1

LHC Distributed Data Management
CHEP’98, Chicago
Eva Arderiu Ribera

CERN, IT/ASD/RD45,Geneva 23,CH-1211, Switzerland
Eva.Arderiu@cern.ch

Abstract
Since 1995, the RD45 project at CERN has been

working to solve the data management problems posed by
the LHC experiments, where data volumes of up to 100
PetaBytes and data rates of up to 1.5 GigaBytes/second
are expected. RD45 proposes the use of an ODMG
compliant Object Database (ODBMS), together with a
thin layer of HEP-specific code, plus a coupling to a Mass
Storage System, as a solution to the object-persistency
problem. This has the strong advantage of being
seamlessly integrated with the object-oriented based
software environment of the new experiments, offering
both C++ and Java bindings. As well as satisfying the
above requirements in terms of scalability, any potential
solution must also function in a fully distributed,
heterogeneous environment and provide efficient access to
the experimental data to a world-wide physics community.
Although the production phase of the LHC is still in the
future, ODBMS-based solutions are already in production
use by a number of other experiments (Zeus, Ceres/NA45,
BaBar), and have also been used by a number of LHC-
related test-beam activities.

This paper will concentrate on the data distribution
aspects of the overall data management scheme, including
the feasibility of using a single versus multiple collections
of databases (or federations), schemes for data import and
export and issues concerning data replication. We will
present a set of use cases for data distribution and
distributed data access that exploits the features of the
Object database management system. These examples will
concentrate on the use of calibration and event tag data.
Keywords: distributed object oriented databases,
federated database, replication protocol

1 Introduction
Data Management has changed dramatically over the

lifetime of CERN, some forty years ago. At that time,
CERN used a Ferranti Mercury computer that filled a
large room and had performance characteristics worse
than a simple pocket calculator of today. Its clock speed
was a mere 1MHz, its RAM memory capacity was 2K 20-
bit words, and its storage device consisted of four
magnetic drums each holding 32kx20bits. Much later on,

in the LEP era, applications moved from the use of a
centralised architecture, based on a "big" mainframe to a
client/server model. A distributed paradigm persists to this
day, but will need to evolve to cater not only for local area
networks but also wide area networks and be capable of
handling the quantities of data foreseen by the LHC
experiments. These go beyond the petabyte range (1015

Bytes) and with data rates of 100MB/second to 1.5
Gigabytes/second. Although new technologies are
emerging that will help us to handle these new
requirements, no existing WAN network can currently
offer sufficient bandwidth (bits per second) or low enough
latency to allow physicists to download large quantities of
data in a acceptable interval of time. It is expected that by
the year 2005, the requirements of the LHC experiments
will be able to be met in terms of data storage. The
evolution of network capabilities and cost are, however,
less certain.

In many of the current computing models of the
experiments (CMS, ATLAS, BABAR) [1][2][7], it is
assumed that some of the data, mainly the analysis,
calibration and tag data, will be replicated and updated in
remote institutes (so called regional centres). Based on
the client/server architecture of Objectivity/DB, a
possible distributed scenario could be the one shown in

Figure 1 - Distributed Scenario for Regional Centres

www.manaraa.com

2

figure 1. The highest logical level in the storage hierarchy
is called a federated database (FDB). This FDB can be
divided in several autonomous partitions to provide a
fault tolerant environment. Each autonomous partition is
formed by one or more data servers (called AMS), a lock
server (which maintains consistency when concurrent
access occurs), and databases and replicas of databases
which map to files. Each database contains objects that
can be accessed directly by the application.

In figure 1, we see a general view of a possible
database distribution scheme. In this scenario, there is one
autonomous partition residing at CERN and the others
located at each regional centre. These autonomous
partitions have their own lock servers and data servers
(AMS) offering a complete fault tolerant environment.
Should one partition become unavailable for whatever
reason, the other partitions will not be affected1 and can
continue accessing data residing in databases local to their
partition, or in other partitions that continue to function
normally. Each autonomous partition contains databases
that (typically) reside locally and/or replicas of databases
that also reside in other autonomous partitions. In the case
of database replicas, there is no “master” copy – each
database maintains an identical and indistinguishable copy
of all contained objects. The synchronization between
replicas is done via the AMS servers in parallel and it is
based on an asynchronous replication protocol with
quorum calculation. It is possible to assign weights to the
database replicas in a way that those partitions that have
more than 50% of the votes are able to update replicated
databases: others are only permitted to read the data.

This architecture based in one FDB and many
autonomous partitions is discussed in more detail in next
sections. There we study its feasibility for data distribution
based on current tests and we propose alternative
architectures.

2 Client/server Architectures
Based on the client/server architecture of

Objectivity/DB we can adopt two distributed models: one
based on a single, global federated database (FDB), as
explained in the introduction, and the other based on
multiple, independent FDBs.

1 In the current version of Objectivity/DB, certain
operations, such as additions or changes to database
schema or the database catalogue, require that all
partitions are available. This restriction will be removed in
a future release of Objectivity/DB.

2.1 One Federated Database
An FDB is the highest logical level in the ODBMS

hierarchy. As is shown in figure 1, we have a world wide
federated database split in autonomous partitions, which
communicate, via a replication protocol. This
asynchronous replication protocol, together with a quorum
calculation, keeps with all replicas (DB images)
consistent, within a fault tolerant environment 1.

2.2 Independent Federated Databases
The second architecture proposed is based on

completely independent federated databases. This means
that, instead of having an FDB with multiple autonomous
partitions, one per regional centre, we have separate FDBs
in each regional centre, each of which is completely
independent. To some extent, one can think of these
independent FDBs as being “equivalent” to autonomous
partitions. Instead of database replicas, there are now
copies. As such, the synchronization of these copies is not
handled via the DB replication protocol. Instead, an in-
house procedure must be implemented. The advantage that
this system has over a single federation is the lack of
dependency between the different federations, which can
result in increased fault tolerance, albeit at the cost of
additional management overhead.

2.3 Main Differences
Each of the implementations described above has both

advantages and disadvantages. Below, the most important
features that differentiate the two models are given. These
should be considered when deciding which choice to
implement.

• Schema Maintenance: in a worldwide
collaboration, where data is replicated to many
centres, it is not easy to keep the schema
synchronized. Using a single FDB, all such
changes are automatically handled by the
ODBMS.

• Fault Tolerance: if any component in the system
has a failure the other ones should not be affected.
Nowadays1 with one FDB model it is not possible
to change the catalogue if one of the autonomous
partitions is not available. With independent
FDBs, fault tolerance across regional centres is
guarantied.

• Replica Maintenance: keeping replicas
synchronized is done automatically by the
replication protocol in the single FDB model,
whilst in the independent FDB model this requires
an in-house implementation. The data replication
protocol from Objectivity/DB is asynchronous.
This technique captures changes and stores them
until the update transaction completes. At the time
of transaction completion, the changes are

www.manaraa.com

3

transmitted to the other images. If one of the
receiving systems crashes or is unavailable, or
there is a network failure the transaction will
continue with the available ones. Inconsistent
databases are resynchronized as soon as they
become available. Choosing one or the other
depends on the system requirements, is it needed
to have replicas consistent immediately?

• Object Associations: ODBMS offer the
capability to store complex object models in the
database. Is it possible with one FDB model to
have objects distributed over many databases.
Moreover, these databases may be distributed
world wide, so a user accessing one object in a
certain DB can follow a link to another object that
is in another DB. This feature is not possible with
independent FDBs, each of which has entirely
separated OIDs.

• QoS: another factor to consider is the quality of
service (QoS) offered by the different Computer
Centres which are going to support an FDB:
expert manpower to handle DB failures, storage
capacity, link bandwidth, etc. For example, in the
one FDB model, when there is an update of a
replicated DB, the updated data must be sent to all
the remote sites which have the same replica too.
If the network links are poor, this will slow down
all the system, so it is required in such a model a
global QoS respect to the network bandwidth.

Table 1 at the end of the paper summarizes all these
points.

3 Relevant Availability and Performance
Parameters

There are four relevant availability and performance
parameters that should be considered in both architectures:
number of replicas, nature of transaction, frequency of
synchronization and bandwidth of the link. This section
discusses these parameters and presents tests based on the
single FDB model. Table 2 at the end of the paper
summarizes this section.

3.1 Number of Replicas
In the single FDB model, we have one or more

databases, each of which may be replicated in multiple
autonomous partitions. Every update transaction that is
updating data in one of the replicas synchronizes with the
rest of the replicas. Typically, this means longer
transaction and longer waiting times. Even though this
section discusses a test with many replicas, such a scenario
is not recommended in the WAN, as the bandwidth and
latencies of these connections may result in unacceptably
high transaction overhead.

In certain scenarios, such as the replication of
calibration or tag data, it is likely that large numbers of
replicas (images) would be involved. Comparisons with
HEPDB [4] suggest that some 10-15 images might be
required for calibration data, but many more for tag data -
perhaps as many as the number of institutes involved in an
LHC collaboration. We have therefore tested replication
up to 90 images - the limit arriving from the number of
nodes that could conveniently be used for this purpose and
not from any limitation in Objectivity/DB.

The replica scalability tests where done using some 90
inter-linked workstation-style computers running Unix.
Data transfer was performed via Ethernet.

As is shown in figure 2, the time taken, both to create
persistent objects and commit the corresponding
transaction, increases with the number of images involved.
The latter is expected - not only does the transaction not
complete until the data involved has been safely written to
disk on all servers, but more network traffic is involved.
When an attempt to create new objects is made, the
database will dynamically contact all servers involved and
only permit the operation to continue if sufficient quorum
is obtained. This technique, similar to that deployed in
VMS clusters, ensures that database consistency is
maintained.

3.2 Nature of Transaction
A transaction is a unit of work an application applies

to a federated database. Transaction control is used to
make several database requests or operations appear to all

Figure 2 Replica Scalability

www.manaraa.com

4

users as a single, indivisible operation. Transactions can
be in update or read modes, and can perform long or short
operations.

Applications do not work with Objectivity/DB objects
directly; instead they work with local representations of
objects which are stored in the client’s cache memory,
which must be retrieved from and written back to a
federated database at commit time. In order to support
concurrent access there is a locking protocol that makes
sure that any user at any time accesses consistent data.

When we talk about update and about synchronization
we must consider the locking factor, many users may
access a database at the same time and lock those data that
is being updated. In the ATLAS and CMS Computing
technical proposals, it is assumed that some 150 physicists
will be actively performing analysis at any time of day or
night. Here, "active" is taken to mean the number of users
who are reading or writing data to the database within a
given time interval - say one hour. Given this scenario, it
is important to know the type of transaction, read or
update, and the amount of replicas to update per
transaction.

Read transactions

Tests carried out at Caltech already have shown that
concurrent reading of more than 100 users can be
supported by a single Objectivity FDB without any
significant performance penalty. These tests where carried
out without the use of replicas. In read transactions, there
is a small protocol overhead in contacting the other lock
servers, but the number of replicas does not seriously
affect the transaction time.

Update transactions

In the single FDB model with autonomous partitions,
if one database is being updated, at the end of the
transaction all its copies will be synchronized with the
replication protocol. This means that the transaction time
increases by a factor of the number of the replicas and the
amount of data to be replicated [6]. In the independent
FDB model the database synchronization is done after the
transaction finished (after the commit).

To reduce locking factor and improve I/O throughput
we can use concepts of parallel DBs, for example we can
distribute as many data servers (AMS) as necessary, for
example thousands of databases could be stored on
separate data servers, handling just one user. As the
locking granularity is at the level of a container, each
single database could support 216 parallel writers without
any lock conflicts. CERN has recently installed data
servers that will serve a few hundred GB of disk on
multiple disk controllers, connected to fast networks, so as
not to limit the I/O throughput. Clearly, an important issue

will be designing a computing environment such that the
individual database servers can provide sufficient
bandwidth and whereby the data is efficiently clustered, as
is discussed section 3.4 below.

3.3 Frequency of Synchronization

There are different ways to replicate and synchronize
depending if we use the single FDB model, or the
independent FDBs model:

One FDB with Partitions
• Immediate Synchronization: data is

synchronized within the transaction using the
replication protocol from Objectivity/DB. Next
are the steps to create the replica. There are no
replica inconsistencies, if any DB is down, it is
resynchronized after it comes back to the FDB.

a) creation of the replica
via network: oonewdbimage [-remoteHost…]

via tape:
1- oonewdbimage [-localHost]

2- oochangedb -catalogonly [new location]

3- send replica via tape to the new location

• "On-Demand" Synchronization: the same as
with independent FDBs.

Independent FDBs
• Inmediate Synchronization: not available - there

is no replication protocol between independent
FDBs.

• "On-Demand" Synchronization: the databases
are synchronized by an in-house procedure.
Depending on this procedure, the probability of
inconsistency can be very high. Next is the
procedure to create the copy:

1- oocopydb [localhost]

2- send file by tape or network
3- ooattachdb [new id] [remote host] remote_boot_file

3.4 Link Bandwidth
It is important to stress that the required network

bandwidth for large databases is not yet available - it is
not realistic to replicate large data volumes, e.g. in the TB
range, over the networks that are typically in use in HEP
today. Thus, in the short term, replication via tape is
viewed as the most appropriate option for large data
volumes. However, replication remains a viable solution

www.manaraa.com

5

Figure 3 Comparison of update in WAN and LAN using

replication protocol

for smallish data volumes, such as in the case of
calibration and event data.

Any application requiring access to remote data has a
performance penalty as the transmission of request and
data are done via the network, so it is orders of magnitude
slower than local access. Data replication transparently
synchronizes all copies when an update occurs. All copies
are thus system maintained and consistent. By providing
local replicas of remote databases, local response time
improves. Only updates result in network traffic, and even
then, the transmission takes place only after the
completion of the local transaction.

Objectivity/DB is built on a page server architecture -
this means that the unit of transfer and storage is a page,
the size of which may be in the range 1-64KB. Other
architectures are based on object server, whereby
individual objects are transferred between client and
server and vice versa. By improving the clustering, i.e. the
number of “interesting” objects that are co-located, we can
reduce the page reads and hence the network bandwidth
required and disk I/Os.

The amount of data to be copied (replicated) is a
parameter directly related to the network bandwidth. The
volumes of data foreseen for the LHC era, depending on
the model adopted (centralized, partially or fully
distributed), would require data connections between
CERN and regional processing centres from a few
Mbits/second to 600 Mbits/second - 2.4 Gbit/second [5].
Though we can not predict how network will evolve in
coming ten years, we can already make some assumptions
based on the current architecture and its scalability.

Independent of the volume of data to be replicated,
databases themselves are limited in size by the system file
size limits. Today, most operating systems typically
support 64-bit file systems and hence the limits on file size
imposed by the file system are not important – other
considerations suggest that a file and hence database
should not today exceed a few GB in size.

We made a test to simulate the update frequency and
data volume of a calibration database, involved updating
1KB of data every 5 minutes. This was performed using a
local DB that had two replicas, one located in the same
LAN and the other located at Caltech (WAN access). As
the figure 3 shows, the data rate was strongly correlated to
the hour of the day. During peak hours, when the link was
essentially saturated, a relatively low data rate of around
2Kbit/second was obtained. However, during off-peak
hours, data rates of 20Kbit/second were observed. Under
such conditions, remote replicas behave essentially
identically to local ones. The data servers involved in
these tests where HP712/60 (HP/UX 10.20), RD/6000
Power2 (Aix4.1) and Pentium Pro 200 Mhz (WindowsNT
4.0).

In figure 3 the overall throughput of the protocol stack,

seen from the user, is shown. In this protocol stack we do
not include the interaction with the Mass Storage Interface
(HPSS): all data is disk resident.

4 Use Cases
Two typical use cases for replication on HEP scenarios

are the event tag data and the calibration data distribution.
If dedicated networks offer the required bandwidth, the

scenario based upon a single FDB would be optimal. The
federated database would have as many partitions as
regional centres, with the full data sample stored at CERN
and replicas of the event tag data, calibration data etc. at
regional centres. Direct navigation from the AOD or ESD
data to the raw data would be possible. Associations could
be tested for validity, probably not at the level of objects
due to performance reasons, but perhaps at the level of
containers, using the is_valid function.
ObjectHandle.is_valid(). If, however, the required
bandwidths do not become available, we must consider
alternative architectures, such as the independent FDB
model, or as discussed in section 5, a mixture of the two
models described until now.

4.1 Event Tag Data
Event Tag Data contains the most commonly accessed

values of the event data and thus provides a mechanism
whereby event selections can be performed more
efficiently.

However, unlike previous models aimed at improving
the performance of the analysis stage, a link between the

Non saturated hours

www.manaraa.com

6

event tag and full event data is maintained, allowing
navigation from the tag to the complete event. However,
the use of multiple federated databases is not suitable for
this case, as it does not permit navigation from e.g. the
event summary data stored at a regional centre to the
rawdata stored at CERN. This is because the object
identity is unique within a federation, the objects in one
database can point to objects in another database but not
across federations.

Using the data replication option as in figure 1, could
be used both in the local and wide area. Rather than access
a remote collection, a user could access a replicated tag
database. The amount of data that was replicated could be
reduced further if only the tags corresponding to a specific
pre-selection were made available. For certain rare and
interesting channels, it would be possible to replicate the
full event data too, further reducing the overhead on the
wide-area network. This would not only reduce the load
on any central servers, but would also minimize network
traffic.

4.2 Calibration Data
The information that is typically stored in such a

database includes: electronics calibrations; detector
alignments; trigger/online/detector configuration;
reconstruction adjustable parameters. Calibration and
monitoring data, mostly produced on-line, must be
available within an hour on the off-line computer in order
to process data as quickly as possible. It is desirable to
have this data available within a few hours on other sites
for calibration studies and refits. ODBMS-based
calibration systems have been developed both in BaBar
and CMS. The basic functionality offered by the two
systems is similar, and allows information to be retrieved
based upon a "validity time".

The amount of calibration data for example in CMS
will be 1 Tbyte/year.

With independent federated database configuration we
loose one important aspect: in calibration data, as BaBar
and CMS have implemented in their calibration libraries,
users have access to the latest version or any other version
of any calibration value at any moment. This feature is
based on the versioning mechanism of Objectivity. If
multiple federations are used, a mechanism to offer global
versioning must be provided to replace this functionality.

5 Alternative Architecture
Both client/server models exposed until now

have their advantages and disadvantages. A possible
solution could be to mix both of them. Given the varying
quality of network connections, a possible solution could
be a combination of the two approaches described above.
Institutes with good connectivity to CERN, e.g. regional
centres and others, could be part of a single federation,

with partitions at each site. Institutes with worse
connections, and/or those that do not require immediate
updates of the data, could use independent federations. In
other words, these “satellite” sites would not be dependent
on the network connection to CERN and regional centres,
nor would they affect the operation of the “central”
federation.

5.1 Central Fdb
The central FDB it is formed by those regional centres

which need immediate update of the replicas, allow
updates from any of them, and can offer a minimum QoS
within them. This central FDB has just few partitions in
order to reduce the number of replicas to synchronize and
the transaction time.

5.2 Satellite Fdbs
Using standard Objectivity/DB tools, data and schema

could be copied from the central federation to these
satellite federations. Should new data be added at the
satellite sites, this could be copied back to the central site
and reattached to the main federation. As in the case with
multiple independent federations, care would have to be
taken to avoid conflicts in database ID – although tools
now exist to attach a DB with a new identifier, changing
the OIDs of all objects within that DB – and in
coordinating the schema between the different federations.

6 Summary
Objectivity/DB client/server architecture offers enough

flexibility to adopt different system configurations
depending on experiment distribution requirements and
constraints.

In this paper three possible distributed architectures
have been exposed:

• one FDB with partitions: partitions located in

Figure 4 Alternative Architecture

www.manaraa.com

7

remote institutes must offer a good QoS.
Asynchronous Replication protocol should be
applied to few partitions if update anytime,
anywhere is required.

• independent FDBs: they offer a completely
independent administration but schema and
replica synchronization must be done by the DB
administrator.

• merging both previous solutions. Offers a scalable
distributed replica solution with a mixture of
administration centres.

The distributed architecture from Objectivity/DB has
been tested. A fault tolerant architecture must be offered
in future releases. This is a requirement that must be met
for the replication protocol to be used in production
environment.

There are more tests to be done based on real use cases
of the HEP scenarios, for example, updating big quantities
of data and synchronizing them, modifying the schema
and synchronizing it, etc..

Nowadays we are studying the combination of
client/server and agent communication paradigm which
could be used to combine the fact of moving the data to
the client (adequate for physicists in regional centres) or
moving the query to the data (adequate for some kind of
are centralised access).

Acknowledgments
The tests on wide area replication where possible

thanks to the help of Julian Bunn and Harvey Newman at
Caltech. I would like to thank also my colleagues in
ASD/RD45 for they daily support and advice.

References
[1] ATLAS Computing Technical Proposal,

CERN/LHCC 96-43
[2] CMS Computing Technical Proposal, CERN/LHCC

96-45
[3] Adeva, B., et al. "The L3 database system"

Elsevier Science Publishers - 0168-9002/91
[4] HEPDB, CERN Program Library Long Writeup

Q180.
[5] Status Report from NT3 project.

http://network.cern.ch
[6] J.Gray;P.Helland;P.O’Neil;D.Shasha: The Dangers

of Replication and a Solution
[7] BABAR:Databases Home Page.

http://www.slac.stanford.edu/BFROOT/doc/Comput
ing/Databases/www/frames.htm

 Table 1 Relevant differences between one FDB and independent FDB architectures

One federated database Independent federated databases
Schema
maintenance

All users access to the common shared
schema automatically

Done manually by administration centers.

Fault
Tolerance

Partitions are partially autonomous
(release 5.0). If one partition crashes,
updates to the schema or catalogue can
not be done until the AP is recovered.

FDB’s are completely independent one
from each other.

Replica
Maintenance

The asynchronous replication protocol
from Objectivity synchronises all
replicas within the transaction.

There are no replicas, there are copies of
DB. In-house protocol to synchronize
copies.

Object
associations

There can be object associations between
objects from different partitions, i.e.,
access raw event data from event tag
data.

There can not be object associations
between DBs in different federations.

QoS A QoS is required between centers
involved in this type of distribution.

No QoS is required between centers, they
can be off-line any time

www.manaraa.com

8

Table 2 Relevant Availability and Performance Parameters

One federated database Independent federated databases
Number of
replicas

They affect the duration of
transaction updates. Not adequate for
large number of replicas.

Replicas are attached copies. Update
transactions are not affected by the number
of replicas.

Transaction
Nature

Update time depends on # replicas
Read time profits from cache access.

Updates not affected by the number of DB
“replicas”.

Frequency of
Synchronization

It is handled by the ODBMS
immediately on the same update
transaction.

Implemented by system administrators. It
Is done "on-demand".

Link Bandwidth Small protocol overhead, depends on
amount of update data and DB size

Depends on DB size.

